Length of polynomials over finite groups
نویسندگان
چکیده
We study the length of polynomials over nite simple non-Abelian groups needed to realize Boolean functions. We apply the results for bounding the length of 5-permutation branching programs recognizing a Boolean set. Moreover, for Boolean and general functions on these groups, we present upper bounds on the length of shortest polynomials computing an arbitrary nary Boolean or general function, or a function given by another polynomial.
منابع مشابه
The Graph Structure of Chebyshev Polynomials over Finite Fields and Applications
We completely describe the functional graph associated to iterations of Chebyshev polynomials over finite fields. Then, we use our structural results to obtain estimates for the average rho length, average number of connected components and the expected value for the period and preperiod of iterating Chebyshev polynomials.
متن کاملPartial proof of Graham Higman's conjecture related to coset diagrams
Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...
متن کاملOn the Heuristic of Approximating Polynomials over Finite Fields by Random Mappings
The study of iterations of functions over a finite field and the corresponding functional graphs is a growing area of research with connections to cryptography. The behaviour of such iterations is frequently approximated by what is know as the Brent-Pollard heuristic, where one treats functions as random mappings. We aim at understanding this heuristic and focus on the expected rho length of a ...
متن کاملSome Graph Polynomials of the Power Graph and its Supergraphs
In this paper, exact formulas for the dependence, independence, vertex cover and clique polynomials of the power graph and its supergraphs for certain finite groups are presented.
متن کاملGenerator polynomials and generator matrix for quasi cyclic codes
Quasi-cyclic (QC) codes form an important generalization of cyclic codes. It is well know that QC codes of length sl with index s over the finite field F are F[y]-submodules of the ring F[x, y]/< x − 1, y − 1 >. The aim of the present paper, is to study QC codes of length sl with index s over the finite field F and find generator polynomials and generator matrix for these codes. To achieve this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Syst. Sci.
دوره 81 شماره
صفحات -
تاریخ انتشار 2015